Philosophy Lexicon of Arguments

Search  
 
Equivalence: Relation between sentences. It exists if both sides have the same truth value, so that they are both true or both false.
 
Author Item Excerpt Meta data
Russell, Bertrand
 
Books on Amazon:
Bertrand Russell
Equivalence I 35
Def formally equivalent/Principia Mathematica/Russell: saying that j x and y x are formally equivalent is the same as to say: j x^ und y x^ have the same extension.
I 43
Equivalence: in classes: Identity notation:
" x e a ‚Č°x x e b " - implication: in classes inclusion (proper subset).

R I
B. Russell/A.N. Whitehead
Principia Mathematica Frankfurt 1986

R II
B. Russell
Das ABC der Relativitätstheorie Frankfurt 1989

R IV
B. Russell
Probleme der Philosophie Frankfurt 1967

R VI
B. Russell
Die Philosophie des logischen Atomismus
In
Eigennamen, U. Wolf (Hg), Frankfurt 1993

R VII
B. Russell
Wahrheit und Falschheit
In
Wahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996


> Counter arguments against Russell
> Counter arguments in relation to Equivalence



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX file
 
Ed. Martin Schulz, access date 2017-04-28