Philosophy Lexicon of Arguments

Equivalence class: is obtained from an equivalence relation (reflexive, symmetric, transitive). E.g. from dividing by 3 with remaining 2 2, 5, 8, 11 ... form an equivalence class. E.g. switch positions, e.g. weekdays form equivalence classes modulo 7.
Author Item Excerpt Meta data
Logic Texts
Books on Amazon
Equivalence Class IV 146
Def equivalence relation/W.Salmon: transitive, symmetric and reflexive. - E.g. congruence -
an equivalence relation decomposes a set into a set of equivalence classes with no common elements. - E.g. The relation to have the same number of elements. With respect to this relation all sets that have two elements are equivalent: e.g. a pair of shoes, a team of horses, a couple, a pair of twins - E.g. siblings can be defined as follows: to have the same parents. An equivalence class with respect to this relation is then a number of children who have common parents. - (s)> numerical equality, - "Gleichortigkeit", the definition of number or location. - (s)> partial identity -> "respects", > "regards".
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001

back to list view | > Suggest your own contribution | > Suggest a correction
Ed. Martin Schulz, access date 2017-03-24