# Philosophy Lexicon of Arguments

Belief degree, degree of belief: subjective assessment of the likelihood of an event. See also belief, probability, probability theory, Bayesianism, Principal Principle, subjective probability.

Author Item Excerpt Meta data
Field, Hartry

Books on Amazon
Belief Degrees II 257
Belief Degree/BD/Conditional/Field: the classic laws of probability for belief degrees do not apply with conditionals. - Disquotational Truth/Conditional: refers to the complete: "If Clinton dies, Gore becomes President" is true iff Clinton dies and Gore becomes President. - Non-disquotational: behaves like disquotational truth in simple sentences. - With conditionals: simplest solution: without truth value.
II 295
Belief Degree/Probability/Field: the classic law of the probability of disjunctions with mutually exclusive disjuncts does not apply for degrees of belief when vagueness is allowed.
II 296
Probability Function/Belief Degree: difference: for probability functions the conditional probability is never higher than the probability of the material conditional.
II 300
Indeterminacy/Belief Degree/Field: in the indeterminacy of a sentence A is determined by the amount for which its probability and its negation add up to less than 1. ((s) i.e. that there is a possibility that neither A nor ~A applies.)
II 302
Indeterminacy/Belief/Field: some: E.g. "belief" in opportunities is inappropriate, because they are never actual. - Solution: Acceptance of sentences about opportunities. - Also in indeterminacy. - Solution: belief degrees in things other than explanation.
II 310
Non-classical Belief Degrees/Indeterminacy/Field: E.g. that every "decision" about the power of the continuum is arbitrary, is a good reason to assume non-classical belief degrees - (moderate non-classical logic: that some instances of the sentence cannot be asserted by the excluded third).

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Fie III
H. Field
Science without numbers Princeton New Jersey 1980

> Counter arguments against Field

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX file

Ed. Martin Schulz, access date 2017-04-25