## Philosophy Lexicon of Arguments | |||

Author | Item | Excerpt | Meta data |
---|---|---|---|

Field, Hartry Books on Amazon |
Impredicativeness | I 214 Definition impredicative/Field: completely impredicative properties: are not at all derived from previously available properties. - In particular, there is no property to be a property. - Quasi-impredicative: also allows "property to be a property". --- I 216 Classic example for impredicative definition: E.g. What is it for an ordinal number to be finite? - Fin (OZ) P [P is inductive & P (0)> P (OZ)] - whereby P is inductive is defined as: b [P(b) > P(b + 1)] - ((s) All successors have the same property (to be a number)). - The invalid objection against the impredicative definition (VsImpredicativity) is that one cannot know that a given number, e.g. 2 is finite because, in order to show this, we must be able to show that 2 has every inductive property of 0 - to show that 2 is finite, we must show first that exactly this 2 is finite (circular). - Solution/Field: the solution is simple: if finiteness is an inductive property, then 2 is finite. - No circle. |
Fie I H. Field Realism, Mathematics and Modality Oxford New York 1989 Fie II H. Field Truth and the Absence of Fact Oxford New York 2001 Fie III H. Field Science without numbers Princeton New Jersey 1980 |

> Counter arguments against **Field**

> Counter arguments in relation to **Impredicativeness**

back to list view | > Suggest your own contribution | > Suggest a correction

Ed. Martin Schulz, access date 2017-03-27