Philosophy Lexicon of Arguments

Search  
 
Author Item Excerpt Meta data
Quine, Willard Van Orman
 
Books on Amazon
Paradoxes VI 124
Comprehension/paradoxes/Quine: that each element relation (each term) results in a set is not possible because of Burali-Forti, etc. - solution: these element relations (conditions) may determine sets, or perhaps the last (outermost) classes - outer condition: cannot be an element in turn - are introduced layer after layer - for classical mathematics "true0" already suffices - everything in one language - hierarchy of truth predicates.
---
VII 136
Paradoxes/Quine: no longer occur when the levels of language are distinguished, i.e. if one keeps out the expressions "true-in-L", "denotes-in-L", etc. of the language L itself.
---
IX 124
Burali-Forti/paradox/Quine: "the class of ordinal numbers does not exist": "NO ε ϑ": is the tamed version of Burali-Forti: that there must be a larger ordinal number and simultaneously it cannot exist. - Reductio ad absurdum of the comparability of the ordinal numbers - solution/today: we will not assume that every condition about the existence of an element relation determines a class.
---
X 70
Grelling paradox/Quine: "x does not fulfil itself" must not occur in the object language.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine
> Counter arguments in relation to Paradoxes



back to list view | > Suggest your own contribution | > Suggest a correction
 
Ed. Martin Schulz, access date 2017-03-27