Philosophy Lexicon of Arguments

Search  
 
Author Item Excerpt Meta data
Quine, Willard Van Orman
 
Books on Amazon
Recursion IX 58
Recursive definition/recursion/sum/product/potency/arithmetic/Quine: recursion scheme: x + 0 = x - x + S°y = S°(x + y); - x times 0 = 0; - x times (S°y) = x + x times y (s) difference to the successor for x u y equal)>; - x0 = S°0 (=1) ; - x S°y = x times x y. - "Plus"/plus sign/Quine: so we can eliminate "+" completely from "x + 3": c - but not from "x + y" (Because we do not know how often we need the successor of x) - multiplication: we can eliminate the "times" from "x 3 times": "x + (x + (x + 0))" but not from "x times y" - recursions are real definitions if we regard the characters as scheme letters for numbers, not as bound variables.
---
IX 126
Transfinite recursion/sum/product/potency/Quine: c transformed into a real or direct definition: a " 0 = k, a " (S "z) = b "(a "z) - a " y = b Iy " k - from the last element: a = U{w: w e Seq u e w u w I S ^w < b}. - Advanced, liberal recursion: not only from the last previous element - instead totality of the previous elements - a = U{w: w e Seq u "y(y e ^w " " J >

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine



back to list view | > Suggest your own contribution | > Suggest a correction
 
Ed. Martin Schulz, access date 2017-03-29