Philosophy Lexicon of Arguments

Author Item Excerpt Meta data
Armstrong, D.M.
Books on Amazon
Relations YII 84f
Relations/Order/Stages/Universals/Armstrong: Laws of Nature/LoN: second order relation between universals - if it is a law of nature that Fs are Gs: between F-ness and G-ness: non-logical, contingent necessity Notation: N(F,G) it follows: (x)(Fx>Gx), but not vice versa (also simple regularity without necessity possible) - Lewis: if two universals are in relation and this relation is in relation to a regularity, then there is a link to this regularity - This second link is an entailment - question: is regularity part of the relation? then it is a surplus above the regularity - Form: (P&Q)>P(P = regularity) - Alternative: P>(PvQ): Armstrong pro. But how can that be forced into the form N(F,G)>(x)(Fx>Gx)?
II 128
Logical relations: cannot exist between separate entities - causal relations: only between separate ones.
II 133
Armstrong: this principle results, in turn, from the idea that absolute necessity arises only from identity - MartinVs: here you must keep a close eye on the range of the examples.

AR II = Disp
D. M. Armstrong

Dispositions, Tim Crane, London New York 1996

D. Armstrong
What is a Law of Nature? Cambridge 1983

> Counter arguments against Armstrong
> Counter arguments in relation to Relations

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX file
Ed. Martin Schulz, access date 2017-04-29