Lexicon of Arguments

Philosophical and Scientific Issues in Dispute
 


[german]  

Find counter arguments by entering NameVs… or …VsName.

The author or concept searched is found in the following 6 entries.
Disputed term/author/ism Author
Entry
Reference
Induction Poincaré
 
Books on Amazon
Waismann I 70
Induktion/Brouwer/Poincaré/Waismann: die Leistung der Induktion: sie ist nicht ein Schluss, der ins Unendliche trägt. Der Satz a+b = b+a ist nicht eine Abkürzung für unendlich viele einzelne Gleichungen, sowenig wie 0,333... eine Abkürzung ist und der induktive Beweis nicht die Abkürzung für unendlich viele Syllogismen (VsPoincaré).
Tatsächlich beginnen wir mit der Aufstellung der Formeln

a+b = b+a
a+(b+c) = (a+b)+c

einen ganz neuen Kalkül, der aus den Berechnungen der Arithmetik auf keine Weise abgeleitet werden kann. Aber:

Prinzip/Induktion/Kalkül/Definition/Poincaré/Waismann: …das ist das Richtige an Poincarés Behauptung, das Prinzip der Induktion sei nicht logisch zu beweisen. VsPoincaré: Aber er stellt nicht, wie er meinte, ein synthetisches Urteil a priori dar, es ist überhaupt keine Wahrheit, sondern eine Festsetzung: Wenn die Formel f(x) für x=1 gilt und f(c+1) aus f(c) folgt, so sagen wir, es sei "die Formel f(x) für alle natürlichen Zahlen bewiesen".
- - -
A. d'Abro Die Kontroversen über das Wesen der Mathematik 1939 in Kursbuch 8 Mathematik 1967
46
Induktion/PoincaréVsHilbert: in einigen seiner Demonstrationen wird das Induktionsprinzip gebraucht, und behauptet, diese Prinzip sei der Ausdruck einer außerlogischen Anschauung des menschlichen Geistes. Poincaré schließt daraus, dass die Geometrie nicht auf rein logische Weise von einer Gruppe von Postulaten abgeleitet werden kann.
46
Induktion wird in der Mathematik fortwährend angewendet, u.a. auch bei Euklids Beweis der Unendlichkeit der Primzahlen.
Induktionsprinzip/Poincaré: es kann kein Gesetz der Logik sein, denn es ist durchaus möglich, eine Mathematik zu konstruieren, in der das Induktionsprinzip geleugnet wird. Auch Hilbert führt es unter seinen Postulaten nicht auf, erscheint also auch der Meinung zu sein, dass es kein reines Postulat ist.


Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976
Induction Waismann
 
Books on Amazon
Waismann I 66
Induktion/Poincaré: Man kann leicht von einer Aussage zur andern übergehen, und sich der Einbildung hingeben, man hätte die Legitimität des rekursiven Verfahrens bewiesen. Man wird aber immer zu einem unbeweisbaren Axiom gelangen. RussellVsPoincaré: Induktion ist eine Definition und kein Prinzip. Es gibt gewisse Zahlen für die es gilt, andere nicht (Cantors unendliche Kardinalzahlen).
Waismann (Bsp von Wittgenstein) Bsp Division 1:3 mit wiederkehrendem Rest.
I 67
Wir schließen, dass es immer so weitergeht. Ergibt es aber die Rechnung wirklich? Jede Rechnung bricht nach endlich vielen Stellen ab. Andererseits zeigt schon der erste Schritt das Wiederkehren. Bsp Fiktion: Volksstamm, der unser Dezimalsystem besitzt, aber ohne unendliche Dezimalbrüche. Jene Menschen brechen nach der 5. Stelle ab. Nehmen wir an, eines Tages entdeckte einer, dass die Division 1:3 weitergeht.
Worin bestünde seine Entdeckung? Man könnte zunächst denken, die Wiederkehr es Restes sei ihm als erstem aufgefallen. Denn hätte man einen der die periodische Division noch nicht kennt gefragt, "Ist in dieser Division der Rest gleich dem Dividenden?" hätte er ja gesagt. Aber damit hätte ihm nicht die Periodizität auffallen müssen.
Man wird vielleicht sagen wollen: Wer die Periodizität entdeckt, sieht die Division anders, als der, der sie nicht kennt, er sieht ein unendliche Möglichkeit darin. Das klingt aber, als ob es auf etwas Psychologisches ankäme.
In Wirklichkeit ist die Entdeckung der Periodizität die Konstruktion eines neuen Kalküls. Man kann sie mit einem Strich markieren.
I 68
Das ist keine reine Äußerlichkeit, es weist auf das Gesetz der Division hin. Die Art, wie er auf die Periodizität aufmerksam macht, ergibt das neue Zeichen. Sobald wir die Periodizität entdeckt haben, haben wir ein neues Gesetz entdeckt. Die Pünktchen vertreten nicht in schattenhafter Weise die mangels Tinte nicht hingeschriebenen Ziffern, sondern sie sind selbst ein vollwertiges Zeichen im Kalkül.
Ein Beweis durch Induktion ist etwas ganz anderes als das, was sonst in der Buchstabenrechnung "Beweis" heißt
.Der Induktionsbeweis führt gar nicht zu der zu beweisenden Formel.
I 69
Ist die Induktion nur das Anzeichen dafür, dass der Satz für alle Zeichen gilt? Dass der Satz für y + 1 gilt wenn er für a gilt, erklärt uns nicht den Sinn des Satzes. Es gibt uns keine Antwort auf die Frage, wie gebraucht man diesen Satz? Was ist das Kriterium seiner Wahrheit?
Wir können ja nicht alle Zahlen durchlaufen und zwar nicht deshalb, weil wir zu wenig Zeit und Papier haben, sondern weil es nichts heißt, weil es logisch unmöglich ist. Tatsächlich ist der Beweis durch Induktion das einzige Kriterium, das wir haben.


Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976

Induction Brouwer
 
Books on Amazon
Waismann I 70
Proof/Induction/Intuitionism/Brouwer/Waismann: If it is said that the proof applies to all numbers, one has to be clear that one only determines by the proof the meaning of the word "all". And this meaning is different than e.g. "All the chairs in this room are made of wood". For when I deny the last statement, this means that there is at least one that is not made of wood.
If, however, I deny "A applies to all natural numbers", that means only: One of the equations in the proof of A is false, but not, there is a number for which A does not apply.
The general formula in mathematics and the existence statement do not belong to the same logical system. (Brouwer: the incorrectness of a statement does not mean the existence of a counterexample).
Now the performance of the induction becomes clear: it is not a conclusion that carries to infinity. The set a + b = b + a is not an abbreviation for infinitely many individual equations, as little as 0.333 ... is an abbreviation, and the inductive proof is not the abbreviation for infinitely many syllogisms (VsPoincaré).

In fact, we begin with the formulation of the formulas

a+b = b+a
a+(b+c) = (a+b)+c

a whole new calculus, which cannot be inferred from the calculations of arithmetic in any way.


Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976
Measurements Poundstone
 
Books on Amazon
I 98-104
Duplication / ratios / knowledge / perception / Poincaré: Assumed, overnight all lengths have doubled - would we notice something? - Poincaré: No - I 102f SchlesingerVsPoincaré: different changes: Gravity: 1/4 as strong as before, density: 1/8, air pressure: 1/8, - mercury thermometer burst - Pendulum: Day length root 2 longer - the speed of light is growing by the same factor (measured by Pendulum) - other clocks: no slower (srping force) - open question: whether the other conservation laws remain constant - I 104 when all the atoms are increased, then the electron has to cope the uphill quantum leap with double the distance and needs a doubled energy expenditure - > huge temperature drop - I 120 hierarchy does not change.
W. Poundstone
I W. Poundstone Im Labyrinth des Denkens, Reinbek 1995
Numerals Waismann
 
Books on Amazon
Waismann I 70
Prinzip/Induktion/Kalkül/Definition/Poincaré/Waismann: …das ist das Richtige an Poincarés Behauptung, das Prinzip der Induktion sei nicht logisch zu beweisen. VsPoincaré: Aber er stellt nicht, wie er meinte, ein synthetisches Urteil a priori dar, es ist überhaupt keine Wahrheit, sondern eine Festsetzung: Wenn die Formel f(x) für x=1 gilt und f(c+1) aus f(c) folgt, so sagen wir, es sei "die Formel f(x) für alle natürlichen Zahlen bewiesen".
I 71
Aber ist das wirklich nur eine Festsetzung? Es könnte paradox erscheinen, dass das assoziative Gesetz der Addition aus einer bloßen Definition (der Formel D) (II 62) hervorgehen soll. Aber die Formel D ist nicht eine Definition im Sinne der Schullogik, nämlich eine Ersetzungsregel, sondern eine Anweisung zur Bildung von Definitionen. In der Formel kommen ja nur Buchstaben vor, in dem Beweis aber Ziffern! Daher kommt es, dass wir Ergebnisse vorhersagen können, ohne die Rechnung auszuführen.
Das kommutative Gesetz könnte man mit einem Pfeil vergleichen, der die Reihe der Zahlen entlang ins Unendliche weist.
Das ist nicht dasselbe, wie wenn man sagt, das Gesetz fasse unendlich viele einzelne Sätze zusammen. Bsp das ist ungefähr wie bei den Sätzen.
Der Scheinwerfer scheint ins Unendliche (wahr) und der Scheinwerfer beleuchtet die Unendlichkeit (unmöglich).
Dadurch, dass wir jene Konvention treffen, nämlich solche Formeln aufstellen, passen wir den Kalkül mit Buchstaben dem Kalkül mit Zahlen an.

Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976

Syntheticy Poincaré
 
Books on Amazon
Waismann I 70
Induktion/Brouwer/Poincaré/Waismann: die Leistung der Induktion: sie ist nicht ein Schluss, der ins Unendliche trägt. Der Satz a+b = b+a ist nicht eine Abkürzung für unendlich viele einzelne Gleichungen, sowenig wie 0,333... eine Abkürzung ist und der induktive Beweis nicht die Abkürzung für unendlich viele Syllogismen (VsPoincaré).
Tatsächlich beginnen wir mit der Aufstellung der Formeln

a+b = b+a
a+(b+c) = (a+b)+c

einen ganz neuen Kalkül, der aus den Berechnungen der Arithmetik auf keine Weise abgeleitet werden kann. Aber:

Prinzip/Induktion/Kalkül/Definition/Poincaré/Waismann: …das ist das Richtige an Poincarés Behauptung, das Prinzip der Induktion sei nicht logisch zu beweisen. VsPoincaré: Aber er stellt nicht, wie er meinte, ein synthetisches Urteil a priori dar, es ist überhaupt keine Wahrheit, sondern eine Festsetzung: Wenn die Formel f(x) für x=1 gilt und f(c+1) aus f(c) folgt, so sagen wir, es sei "die Formel f(x) für alle natürlichen Zahlen bewiesen".


Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976

The author or concept searched is found in the following 5 controversies.
Disputed term/author/ism Author Vs Author
Entry
Reference
Poincaré, H. Duhem Vs Poincaré, H.
 
Books on Amazon
XVI
VsPoincaré: it is not the definitional status of the fundamental laws which escapes the revision. Such revisions, even of the fundamental laws may be necessary and useful, they just cannot be enforced by experiment!
I 290
Poincaré: "The experiment can establish the principles of mechanics, but it cannot destroy them". HadamardVs: "Duhem has shown that it is not about isolated hypotheses, but the totality of hypotheses of mechanics, whose experimental confirmation you can try. ((s)
PoincaréVsholism?).

Duh I
P. Duhem
Ziel und Struktur der physikalischen Theorien Hamburg 1998
Poincaré, H. Quine Vs Poincaré, H.
 
Books on Amazon:
Willard V. O. Quine
IX 176
Classes/existence/Quine: the basic idea rather states that they are there from the beginning, and are not created by description. impredicative/QuineVsPoincaré: if that is so, then there can be no obvious fallacy in impredicative description.
It is reasonable to separate out a desired class, where one indicates a property of it, even if there is the danger, to quantify about it along with everything else in the universal class.
((s) classes/(s): determine only one property of each of their elements.)
Quine: E.g. just like this one can call a certain person an ordinary consumer, based on average values, in which their own values have some influence.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003
Poincaré, H. Russell Vs Poincaré, H.
 
Books on Amazon:
Bertrand Russell
Waismann II 66
RussellVsPoincaré: induction is a definition, not a principle. There are certain numbers for which it is valid, for others not (Cantor's infinite cardinal numbers).

R I
B. Russell/A.N. Whitehead
Principia Mathematica Frankfurt 1986

R II
B. Russell
Das ABC der Relativitätstheorie Frankfurt 1989

R IV
B. Russell
Probleme der Philosophie Frankfurt 1967

R VI
B. Russell
Die Philosophie des logischen Atomismus
In
Eigennamen, U. Wolf (Hg), Frankfurt 1993

R VII
B. Russell
Wahrheit und Falschheit
In
Wahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996

Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976
Poincaré, H. Verschiedene Vs Poincaré, H. Waismann II 70
Wenn es heißt, der Beweis gilt für alle Zahlen, muss man sich darüber klar sein, dass man erst durch den Beweis den Sinn des Wortes "alle" bestimmt. Und dieser Sinn ist ein anderer als Bsp "Alle Sessel in diesem Zimmer sind aus Holz". Denn wenn ich die letzte Aussage verneine bedeutet das: Es gibt mindestens einen, der nicht aus Holz ist.
Wenn ich aber "A gilt für alle natürlichen Zahlen" verneine, so heißt das nur: Eine der Gleichungen im Beweis von A ist falsch, aber nicht, es gibt eine Zahl, für die A nicht gilt!
Die allgemeine Formel in der Mathematik und die Existenzaussage gehören gar nicht demselben logischen System an. (Brouwer: die Unrichtigkeit einer Aussage bedeutet nicht die Existenz eines Gegenbeispiels).
Nun wird die Leistung der Induktion klar: sie ist nicht ein Schluss , der ins Unendliche trägt. Der Satz a+b = b+a ist nicht eine Abkürzung für unendlich viele einzelne Gleichungen, sowenig wie 0,333... eine Abkürzung ist und der induktive Beweis nicht die Abkürzung für unendlich viele Syllogismen (VsPoincaré).
Tatsächlich beginnen wir mit der Aufstellung der Formeln
a+b = b+a
a+(b+c) = (a+b)+c
einen ganz neuen Kalkül, der aus den Berechnungen der Arithmetik auf keine Weise abgeleitet werden kann.
Das ist das richtige an Poincarés Behauptung, das Prinzip der Induktion sei nicht logisch zu beweisen. VsPoincaré: Aber er stellt nicht, wie er meinte, ein synth. Urteil a priori dar, es ist überhaupt keine Wahrheit, sondern eine Festsetzung: Wenn die Formel f(x) für x=1 gilt und f(c+1) aus f(c) folgt, so sagen wir, es sei "die Formel f(x) für alle natürlichen Zahlen bewiesen".





Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976
Poincaré, H. Vollmer Vs Poincaré, H.
 
Books on Amazon
I 78
Anschaulichkeit/Vorstellung/Vollmer: weder ein zweihundert Jahre alter Mann noch eine drei Meter große Frau wären vorstellbar, nicht einmal ein Einhorn. Grund. wir könnten uns die Erfahrungen nicht vorstellen, die wir mit solchen Strukturen hätten. Alle diese Objekte sind aber anschaulich!
I 80
Anschaulichkeit/Poincaré/Reichenbach: für diese Autoren sind Dinge anschaulich, die es für die meisten anderen Autoren nicht sind. Poincaré: vierdimensionale Räume (aber nicht Hilbert Räume), HelmholtzVs, ReichenbachVs. Thesis: wenn eine Theorie empirische Folgen hat, dann können wir uns immer Sinneseindrücke ausmalen. Danach ist jede empirische Theorie anschaulich. (VollmerVs).
Anschaulichkeit/VollmerVsPoincaré: wenn etwas erst projiziert werden muss, um erfahren zu werden, dann gibt es offenbar einen Unterschied zwischen dem Ding und seiner Projektion. Warum sollen wir dann eine Struktur anschaulich nennen, die erst durch Projektion anschaulich gemacht werden muss?
Def Anschaulichkeit/Vollmer: etwas ist anschaulich, wenn es transformiert werden kann. Bsp Planetarium, Molekülmodelle.

Vo I
G. Vollmer
Die Natur der Erkenntnis Bd I Stuttgart 1988

Vo II
G. Vollmer
Die Natur der Erkenntnis Bd II Stuttgart 1988