Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

Author Concept Summary/Quotes Sources

Hartry Field on Logical Possibility - Dictionary of Arguments

I 86
Logical possible/possibility/diamond/KripkeVsField: "it is possible that" is not a logical truth. - FieldVsKripke: yes it is, this is due to Kripke's model-theoretical definition. - It should not be read "mathematically" or "metaphysically possible".
I 87
E.g. Carnap: "He is a bachelor and married": is logically wrong. - (> meaning postulates). - FieldVsCarnap: Meaning relations between predicates should not belong to logic. - Then the sentence is logically consistent.
Consistency operator/Field: MEx (x is red & x is round) - should not only be true, but logical. - ((s) Even without meaning postulates. ((s) Meaning postulate/(s): this is about the extent of the logic.)
I 118
Logical possible/FieldVsKripke: "It is possible that there is an electron": is true in all models, therefore logically true. (> Logical possibility is itself logically true).

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Field I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Field II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Field III
H. Field
Science without numbers Princeton New Jersey 1980

Field IV
Hartry Field
"Realism and Relativism", The Journal of Philosophy, 76 (1982), pp. 553-67
Theories of Truth, Paul Horwich, Aldershot 1994

Send Link
> Counter arguments against Field

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Ed. Martin Schulz, access date 2021-12-09
Legal Notice   Contact   Data protection declaration