## Philosophy Dictionary of ArgumentsHome | |||

| |||

Set Theory: set theory is the system of rules and axioms, which regulates the formation of sets. The elements are exclusively numbers. Sets contain individual objects, that is, numbers as elements. Furthermore, sets contain sub-sets, that is, again sets of elements. The set of all sub-sets of a set is called the power set. Each set contains the empty set as a subset, but not as an element. The size of sets is called the cardinality. Sets containing the same elements are identical. See also comprehension, comprehension axiom, selection axiom, infinity axiom, couple set axiom, extensionality principle._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | Summary | Meta data |
---|---|---|---|

W.V.O. Quine on Set Theory - Dictionary of Arguments IX 24 Set Theory/Quine: if one wants to apply them outside of pure mathematics, one should allow all sorts of things as elements. IX 237ff Set Theory/Quine: single primitive non-logical character: "ε" (epsilon, element relationship). II 115 Background to the set theory considerations here: Same scope: For example, if there are two truth predicates: "True1" and "True2" which both do justice to the paradigm, then they both have the same scope. But Tarski has also shown that even a predicate of truth cannot do full justice to the paradigm without risking contradictions. Nevertheless, a predicate can be constructed that corresponds to any predetermined language and does justice to the paradigm, provided that this language is defined in its vocabulary and formal in its logical structure and provided that certain characteristics of set theory that lie outside the predetermined language are taken into account. II 115/116 This leads to the demand for the openness of set theory. There is a more powerful set theory for each consistent set theory. (Also Goedel). The truth problem has turned out to be the key to the relativity of set theory. _____________ Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition. |
Quine I W.V.O. Quine Word and Object, Cambridge/MA 1960 German Edition: Wort und Gegenstand Stuttgart 1980 Quine II W.V.O. Quine Theories and Things, Cambridge/MA 1986 German Edition: Theorien und Dinge Frankfurt 1985 Quine III W.V.O. Quine Methods of Logic, 4th edition Cambridge/MA 1982 German Edition: Grundzüge der Logik Frankfurt 1978 Quine V W.V.O. Quine The Roots of Reference, La Salle/Illinois 1974 German Edition: Die Wurzeln der Referenz Frankfurt 1989 Quine VI W.V.O. Quine Pursuit of Truth, Cambridge/MA 1992 German Edition: Unterwegs zur Wahrheit Paderborn 1995 Quine VII W.V.O. Quine From a logical point of view Cambridge, Mass. 1953 Quine VII (a) W. V. A. Quine On what there is InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (b) W. V. A. Quine Two dogmas of empiricism InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (c) W. V. A. Quine The problem of meaning in linguistics InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (d) W. V. A. Quine Identity, ostension and hypostasis InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (e) W. V. A. Quine New foundations for mathematical logic InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (f) W. V. A. Quine Logic and the reification of universals InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (g) W. V. A. Quine Notes on the theory of reference InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (h) W. V. A. Quine Reference and modality InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (i) W. V. A. Quine Meaning and existential inference InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VIII W.V.O. Quine Designation and Existence, in: The Journal of Philosophy 36 (1939) German Edition: Bezeichnung und Referenz InZur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982 Quine IX W.V.O. Quine Set Theory and its Logic, Cambridge/MA 1963 German Edition: Mengenlehre und ihre Logik Wiesbaden 1967 Quine X W.V.O. Quine The Philosophy of Logic, Cambridge/MA 1970, 1986 German Edition: Philosophie der Logik Bamberg 2005 Quine XII W.V.O. Quine Ontological Relativity and Other Essays, New York 1969 German Edition: Ontologische Relativität Frankfurt 2003 Quine XIII Willard Van Orman Quine Quiddities Cambridge/London 1987 |

> Counter arguments against **Quine**

> Counter arguments in relation to **Set Theory**

Ed. Martin Schulz, access date 2021-04-11