Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

Author Item Summary Meta data

Peter Norvig on NP-Completeness - Dictionary of Arguments

Norvig I 8
NP-Completeness/Russell/Norvig: How can one recognize an intractable problem? The theory of NP-completeness, pioneered by Steven Cook (1971)(1) and Richard Karp (1972(2)), provides a method. Cook and Karp showed the existence of large classes of canonical combinatorial search and reasoning problems that are NP-complete. Any problem class to which the class of NP-complete problems can be reduced is likely to be intractable. (Although it has not been proved that NP-complete
Norvig I 9
problems are necessarily intractable, most theoreticians believe it.) These results contrast with the optimism with which the popular press greeted the first computers (…).

1. Cook, S. A. (1971). The complexity of theorem proving procedures. In STOC-71, pp. 151–158.
2. Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and Thatcher, J. W.
(Eds.), Complexity of Computer Computations, pp. 85–103. Plenum.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Norvig I
Peter Norvig
Stuart J. Russell
Artificial Intelligence: A Modern Approach Upper Saddle River, NJ 2010

Send Link
> Counter arguments against Norvig

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Ed. Martin Schulz, access date 2021-06-18
Legal Notice   Contact   Data protection declaration