Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Mathematical Entities: mathematical entities are research objects of mathematics, which cannot be regarded as material objects. Nevertheless, there are discussions about the status of their existence. Whereas Platonism assumes its (permanent) existence as intellectual objects or universals, this permanence is denied, e.g. by intuitionism, which assumes that mathematical entities exist only at the moment of their construction.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Paul Benacerraf on Mathematical Entities - Dictionary of Arguments

Stalnaker I 41
Mathematics/Benacerraf/Stalnaker: (Benacerraf, 1973)(1): Benacerraf sees a tension between the need for a plausible representation of what mathematical statements say and a representation of the way we know that such statements are true.
Suppose we demand a causal connection to things that we claim to know. Then it is not clear how this is supposed to work in the case of numbers that are acasual.


1. Benacerraf, P. Mathematical Truth, The Journal of Philosophy 70, 1973, S. 661–679.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Bena I
P. Benacerraf
Philosophy of Mathematics 2ed: Selected Readings Cambridge 1984

Stalnaker I
R. Stalnaker
Ways a World may be Oxford New York 2003


Send Link
> Counter arguments against Benacerraf

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2022-09-25
Legal Notice   Contact   Data protection declaration