Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe



 Continuum Hypothesis - Philosophy Dictionary of Arguments
 
Continuum hypothesis: The continuum hypothesis is a statement in mathematics that says that there is no set of real numbers whose cardinality is strictly between that of the integers and that of the real numbers. In other words, there are no sets of real numbers that are bigger than the set of integers but smaller than the set of real numbers. See also Continuum, Real numbers, Sets, Set theory.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
 
Author Item    More concepts for author
Cantor, Georg Continuum Hypothesis   Cantor, Georg
Field, Hartry Continuum Hypothesis   Field, Hartry
Hilbert, David Continuum Hypothesis   Hilbert, David
Leeds, Stephen Continuum Hypothesis   Leeds, Stephen
Russell, Bertrand Continuum Hypothesis   Russell, Bertrand

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z