Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 Functions - Philosophy Dictionary of Arguments
Functions: A function in mathematics is a relation between a set of inputs and a set of outputs, where each input is related to exactly one output. The set of inputs is called the domain of the function. Functions can be represented by formulas, graphs, or tables. For example, the function f(x) = x^2 is represented by the formula y = x^2, which takes any number as input and returns its square as output. The graph of this function is a parabola.
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
Author Item    More concepts for author
Armstrong, David M. Functions   Armstrong, David M.
Dennett, Daniel Functions   Dennett, Daniel
Evans, Gareth Functions   Evans, Gareth
Frege, Gottlob Functions   Frege, Gottlob
Gärdenfors, Peter Functions   Gärdenfors, Peter
Kauffman, Stuart Functions   Kauffman, Stuart
Luhmann, Niklas Functions   Luhmann, Niklas
Lyons, John Functions   Lyons, John
Mates, Benson Functions   Mates, Benson
Meixner, Uwe Functions   Meixner, Uwe
Nussbaum, Martha Functions   Nussbaum, Martha
Parsons, Talcott Functions   Parsons, Talcott
Place, Ullin Thomas Functions   Place, Ullin Thomas
Putnam, Hilary Functions   Putnam, Hilary
Quine, W.V.O. Functions   Quine, Willard Van Orman
Russell, Bertrand Functions   Russell, Bertrand
Rutter, Michael Functions   Rutter, Michael
Schiffer, Stephen Functions   Schiffer, Stephen
Searle, John R. Functions   Searle, John R.
Sen, Amartya Functions   Sen, Amartya
Tarski, Alfred Functions   Tarski, Alfred
Wittgenstein, Ludwig Functions   Wittgenstein, Ludwig

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Y   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z