Philosophy Dictionary of Arguments

Home

Screenshot Tabelle Begriffe

 
Infinity Axiom: The infinity axiom is an axiom of set theory, which ensures that there are infinite sets. It is formulated in e.g. such a way that a construction rule is specified for the occurrence of elements of a described set. If {x} is the successor of x, the continuation is formed by the union x U {x}. See also set theory, successor, unification, axioms.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
 
Author Item    More concepts for author
Field, , Hartry Infinity Axiom   Field, Hartry
Gödel, Kurt Infinity Axiom   Gödel, Kurt
Hilbert, , David Infinity Axiom   Hilbert, David
Quine, W.V.O. Infinity Axiom   Quine, Willard Van Orman
Tarski, , Alfred Infinity Axiom   Tarski, Alfred
Wittgenstein, Ludwig Infinity Axiom   Wittgenstein, Ludwig

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z