Dictionary of Arguments


Philosophical and Scientific Issues in Dispute
 
[german]

Screenshot Tabelle Begriffes

 

Find counter arguments by entering NameVs… or …VsName.

Enhanced Search:
Search term 1: Author or Term Search term 2: Author or Term


together with


The author or concept searched is found in the following 2 controversies.
Disputed term/author/ism Author Vs Author
Entry
Reference
Principia Mathematica Gödel Vs Principia Mathematica Russell I XIV
Circular Error Principle/VsPrincipia Mathematica(1)/PM/Russell/Gödel: thus seems to apply only to constructivist assumptions: when a term is understood as a symbol, together with a rule to translate sentences containing the symbol into sentences not containing it. Classes/concepts/Gödel: can also be understood as real objects, namely as "multiplicities of things" and concepts as properties or relations of things that exist independently of our definitions and constructions!
This is just as legitimate as the assumption of physical bodies. They are also necessary for mathematics, as they are for physics. Concept/Terminology/Gödel: I will use "concept" from now on exclusively in this objective sense.
A formal difference between these two conceptions of concepts would be: that of two different definitions of the form α(x) = φ(x) it can be assumed that they define two different concepts α in the constructivist sense. (Nominalistic: since two such definitions give different translations for propositions containing α.)
For concepts (terms) this is by no means the case, because the same thing can be described in different ways.
For example, "Two is the term under which all pairs fall and nothing else. There is certainly more than one term in the constructivist sense that satisfies this condition, but there could be a common "form" or "nature" of all pairs.
All/Carnap: the proposal to understand "all" as a necessity would not help if "provability" were introduced in a constructivist manner (..+...).
Def Intensionality Axiom/Russell/Gödel: different terms belong to different definitions.
This axiom holds for terms in the circular error principle: constructivist sense.
Concepts/Russell/Gödel: (unequal terms!) should exist objectively. (So not constructed). (Realistic point of view).
When only talking about concepts, the question gets a completely different meaning: then there seems to be no objection to talking about all of them, nor to describing some of them with reference to all of them.
Properties/GödelVsRussell: one could surely speak of the totality of all properties (or all of a certain type) without this leading to an "absurdity"! ((s) > Example "All properties of a great commander".
Gödel: this simply makes it impossible to construe their meaning (i.e. as an assertion about sense perception or any other non-conceptual entities), which is not an objection to someone taking the realistic point of view.
Part/whole/Mereology/GödelVsRussell: neither is it contradictory that a part should be identical (not just the same) with the whole, as can be seen in the case of structures in the abstract sense. Example: the structure of the series of integers contains itself as a special part.
I XVI/XVII
Even within the realm of constructivist logic there are certain approximations to this self-reflectivity (self-reflexivity/today: self-similarity) of impredicative qualities, namely e.g. propositions, which as parts of their meaning do not contain themselves, but their own formal provability. There are also sentences that refer to a totality of sentences to which they themselves belong: Example: "Each sentence of a (given) language contains at least one relational word".
This makes it necessary to look for other solutions to the paradoxes, according to which the fallacy does not consist in the assumption of certain self-reflectivities of the basic terms, but in other assumptions about them!
The solution may have been found for the time being in simple type theory. Of course, all this refers only to concepts.
Classes: one should think that they are also not created by their definitions, but only described! Then the circular error principle does not apply again.
Zermelo splits classes into "levels", so that only sets of lower levels can be elements of sets of higher levels.
Reducibility Axiom/Russell/Gödel: (later dropped) is now taken by the class axiom (Zermelo's "axiom of choice"): that for each level, for any propositional function
φ(x)
the set of those x of this level exists for which φ(x) is true.
This seems to be implied by the concept of classes as multiplicities.
I XVIII
Extensionality/Classes: Russell: two reasons against the extensional view of classes: 1. the existence of the zero class, which cannot be well a collection, 2. the single classes, which should be identical with their only elements. GödelVsRussell: this could only prove that the zero classes and the single classes (as distinguished from their only element) are fictions to simplify the calculation, and do not prove that all classes are fictions!
Russell: tries to get by as far as possible without assuming the objective existence of classes. According to this, classes are only a facon de parler.
Gödel: but also "idealistic" propositions that contain universals could lead to the same paradoxes.
Russell: creates rules of translation according to which sentences containing class names or the term "class" are translated into sentences not containing them.
Class Name/Russell: eliminate by translation rules.
Classes/Principia Mathematica/Russell/Gödel: the Principia Mathematica can do without classes, but only if you assume the existence of a concept whenever you want to construct a class.
First, some of them, the basic predicates and relations like "red", "colder" must be apparently considered real objects. The higher terms then appear as something constructed (i.e. something that does not belong to the "inventory of the world").
I XIX
Ramsey: said that one can form propositions of infinite length and considers the difference finite/infinite as not so decisive. Gödel: Like physics, logic and mathematics are based on real content and cannot be "explained away".
Existence/Ontology/Gödel: it does not behave as if the universe of things is divided into orders and one is forbidden to speak of all orders, but on the contrary: it is possible to speak of all existing things. But classes and concepts are not among them.
But when they are introduced as a facon de parler, it turns out that the extension of symbolism opens the possibility of introducing them in a more comprehensive way, and so on, to infinity.
To maintain this scheme, however, one must presuppose arithmetics (or something equivalent), which only proves that not even this limited logic can be built on nothing.
I XX
Constructivist posture/constructivism/Russell/Gödel: was abandoned in the first edition, since the reducibility axiom for higher types makes it necessary that basic predicates of arbitrarily high type exist. From constructivism remains only
1. Classes as facon de parler
2. The definition of ~, v, etc. as valid for propositions containing quantifiers,
3. The stepwise construction of functions of orders higher than 1 (of course superfluous because of the R-Axiom)
4. the interpretation of definitions as mere typographical abbreviations (all incomplete symbols, not those that name an object described by the definition!).
Reducibility Axiom/GödelVsRussell: this last point is an illusion, because of the reducibility axiom there are always real objects in the form of basic predicates or combinations of such according to each defined symbol.
Constructivist posture/constructivism/Principia Mathematica/Gödel: is taken again in the second edition and the reducibility axiom is dropped. It is determined that all basic predicates belong to the lowest type.
Variables/Russell/Gödel: their purpose is to enable the assertions of more complicated truth functions of atomistic propositions. (i.e. that the higher types are only a facon de parler.).
The basis of the theory should therefore consist of truth functions of atomistic propositions.
This is not a problem if the number of individuals and basic predicates is finite.
Ramsey: Problem of the inability to form infinite propositions is a "mere secondary matter".
I XXI
Finite/infinite/Gödel: with this circumvention of the problem by disregarding the difference between finite and infinite a simpler and at the same time more far-reaching interpretation of set theory exists: Then Russell's Apercu that propositions about classes can be interpreted as propositions about their elements becomes literally true, provided n is the number of (finite) individuals in the world and provided we neglect the zero class. (..) + I XXI
Theory of integers: the second edition claims that it can be achieved. Problem: that in the definition "those cardinals belonging to each class that contains 0 and contains x + 1 if it contains x" the phrase "each class" must refer to a given order.
I XXII
Thus whole numbers of different orders are obtained, and complete induction can be applied to whole numbers of order n only for properties of n! (...) The question of the theory of integers based on ramified type theory is still unsolved.
I XXIII
Theory of Order/Gödel: is more fruitful if it is considered from a mathematical point of view, not a philosophical one, i.e. independent of the question of whether impredicative definitions are permissible. (...) impredicative totalities are assumed by a function of order α and ω .
Set/Class/Principia Mathematica(1)/Russell/Type Theory/Gödel: the existence of a well-ordered set of the order type ω is sufficient for the theory of real numbers.
Def Continuum Hypothesis/Gödel: (generalized): no cardinal number exists between the power of any arbitrary set and the power of the set of its subsets.
Type Theory/VsType Theory/GödelVsRussell: mixed types (individuals together with predications about individuals etc.) obviously do not contradict the circular error principle at all!
I XXIV
Russell based his theory on quite different reasons, similar to those Frege had already adopted for the theory of simpler types for functions. Propositional functions/statement function/Russell/Gödel: always have something ambiguous because of the variables. (Frege: something unsaturated).
Propositional function/p.f./Russell/Gödel: is so to speak a fragment of a proposition. It is only possible to combine them if they "fit together" i.e. are of a suitable type.
GödelVsRussell: Concepts (terms) as real objects: then the theory of simple types is not plausible, because what one would expect (like "transitivity" or the number two) to be a concept would then seem to be something that stands behind all its different "realizations" on the different levels and therefore does not exist according to type theory.
I XXV
Paradoxes in the intensional form/Gödel: here type theory brings a new idea: namely to blame the paradoxes not on the axiom that every propositional function defines a concept or a class, but on the assumption that every concept results in a meaningful proposition if it is claimed for any object as an argument. The objection that any concept can be extended to all arguments by defining another one that gives a false proposition whenever the original one was meaningless can easily be invalidated by pointing out that the concept "meaningfully applicable" does not always have to be meaningfully applicable itself.


1. Whitehead, A.N. and Russel, B. (1910). Principia Mathematica. Cambridge: Cambridge University Press.

Göd II
Kurt Gödel
Collected Works: Volume II: Publications 1938-1974 Oxford 1990
Type Theory Verschiedene Vs Type Theory Thiel I 324
Poincaré: believed he had found the decisive criterion: illegitimate, "non-predictive" conditions are those that contain such a circle. (>impressive, Russell). At first it seemed sufficient to demand from expressions for the relationship between element and set that in "x ε y" the second relational element y must belong to an exactly 1 higher level than x (simple >type theory) so the demand that every admissible expression should not only be itself "predicative" (i.e. not impredicative), but also all arguments occurring in it must satisfy this condition leads to a ">branched type theory".
VsType Theory: Among its complications was not only the fact that such a theory has to consider not only types but also orders, and also the more than annoying fact that now e.g. the upper limit of a non-empty set of real numbers (their existence in all steadiness considerations in the classical VsType Theory) is not only a question of the order, but also of the fact that the upper limit of a non-empty set of real numbers (their existence in all steadiness considerations is presupposed in the classical analysis) of higher order than the real numbers whose upper limit it is.
The consequence of this is that one can no longer simply quantify using "all real numbers", but only using all real numbers of a certain order. Unacceptable for mathematics, and a huge obstacle for the "arithmetic program" of classical basic research.
All the more so for the logicism that follows.





T I
Chr. Thiel
Philosophie und Mathematik Darmstadt 1995