Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Inclusion: Inclusion in logic is a relationship between two sets, where the first set is a subset of the second set. It is often symbolized by the subset symbol (⊆). cf. Entailment, Sets, Subsets, Set theory, Element relation.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

H. Wessel on Inclusion - Dictionary of Arguments

I 357
Inclusion/Wessel: e.g. a is included in the class b: similar logical structure as "a is a cause of b". - There are two subjects, iclusion is a 2-place predicate.
cf. >Entailment
, >Sets, , >Subsets,
>Element relation.

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Wessel I
H. Wessel
Logik Berlin 1999


Send Link
> Counter arguments against Wessel
> Counter arguments in relation to Inclusion

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z