## Philosophy Dictionary of ArgumentsHome | |||

| |||

Substitutional Quantification: the substitutional quantification is concerned with the determination of whether linguistic expressions can be formed for a situation. E.g. "There is a true sentence that ...". In contrast, the referential quantification - the form of quantification normally used in predicate logic - tells us something about objects. E.g. "There is at least one object x with the property ..." or "For all objects x applies ...". The decisive difference between the two types of quantification is that, in the case of the possible replacement of a linguistic expression by another expression, a so-called substitution class must be assumed which cannot exist in the case of objects since the everyday subject area is not classified into classes is. E.g. you can replace a table by some box, but you cannot replace the word table by any available word. See also referential quantification, quantification, substitution, inference, implication, stronger/weaker, logic, systems, semantic rise._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Concept | Summary/Quotes | Sources |
---|---|---|---|

W.V.O. Quine on Substitutional Quantification - Dictionary of Arguments V 140 Substitutional quantification/Quine: is open for other grammatical categories than just singular term but has other truth function. - Referential quantification: here, the objects do not even need to be specifiable by name. >Referential quantification, >Truth functions, >Singular terms. --- V 141 Language learning: first substitution quantification: from relative pronouns. - Later: referential quantification: because of categorical sentences. Substitution quantification: would be absurd: that every inserted name that verifies Fx also verifies Gx - absurd: that each apple or rabbit would have to have a name or a singular description. - Most objects do not have names. --- V 140 Substitutional Quantification/Referential Quantification/Truth Function/Quine: referential universal quantification: can be falsified by one single object, even though this is not specifiable by a name. - The same substitutional universal quantification: in contrast, remains true. - Existential quantification: referential: may be true due to a non-assignable value. - The same in substitutional sense: does not apply for lack of an assignable example. --- V 146f Substitutional Quantification/Quine: Problem: Blind spot: substitutional universal quantification: E.g. none of the substitution cases should be rejected, but some require abstention. - Existential quantification: E.g. none of the cases is to be approved, but some abstention is in order.- then neither agree nor abstain. (Equivalent to the alternation). --- Ad V 170 Substitutional Quantification/(s): related to the quantification over apparent classes in Quine’s meta language? --- V 175 Numbers/Classes/Quantification/Ontology/Substitutional quantification/Quine: first substitutional quantification through numbers and classes. - Problem: Numbers and classes can then not be eliminated. - Can also be used as an object quantification (referential quantification) if one allows every number to have a successor. - ((s) with substitution quantification each would have to have a name.) Class quantifier becomes object quantifier if one allows the exchange of the quantifiers (AQU/AQU/ - EQu/EQu) - so the law of the partial classes of one was introduced. --- X 124 Substitutional quantification/Quine: requires name for the values of the variables. Referential quantification/(s) speaks of objects at most. - Definition truth/Substitutional Quantification/Barcan/Quine: applying-Quantification - is true iff at least one of its cases, which is obtained by omitting the quantifier and inserting a name for the variable, is true. - Problem: almost never enough names for the objects in a not overly limited world. - E.g. No Goedel numbers for irrational numbers. - Then substitutional quantification can be wrong, because there is no name for the object, but the referential quantification can be true at the same time - i.e. both are not extensionally equal. X 124 Names/logic/substitutional quantification/Quine: Problem: never enough names for all objects in the world: e.g. if a set is not determined by an open sentence, it also has no name. - Otherwise E.g. Name a, Determination: x ε a - E.g. irrational numbers cannot be attributed to integers. - (s) > substitution class. --- XII 79f Substitutional Quantification/Quine: Here the variables are placeholders for words of any syntactic category (except names) - Important argument: then there is no way to distinguish names from the rest of the vocabulary and real referential variables. ((s) Does that mean that one cannot distinguish fragments like object and greater than, and that structures like "there is a greater than" would be possible?). XII 80 Substitutional Quantification/Quine: Problem: Assuming an infinite range of named objects. - Then it is possible to show for each substitution result of a name the truth of a formula and simultaneously to refute the universal quantification of the formula. - (everyone/all). - Then we have shown that the range has at least one unnamed object. - ((s) (> not enough names). - Therefore QuineVsSubstitutional Quantification. E.g. assuming the range contained the real name - Then not all could be named, but the unnamed cannot be separated. - The theory can always be strengthened to name a certain number, but not all - referential quantification: attributes nameless objects to itself. - Trick: (see above) every substitution result with a name is true, but makes universal quantification false. ((s) Thus an infinite number of objects secured). - A theory of real names must be based on referential quantification. _____________ Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition. |
Quine I W.V.O. Quine Word and Object, Cambridge/MA 1960 German Edition: Wort und Gegenstand Stuttgart 1980 Quine II W.V.O. Quine Theories and Things, Cambridge/MA 1986 German Edition: Theorien und Dinge Frankfurt 1985 Quine III W.V.O. Quine Methods of Logic, 4th edition Cambridge/MA 1982 German Edition: Grundzüge der Logik Frankfurt 1978 Quine V W.V.O. Quine The Roots of Reference, La Salle/Illinois 1974 German Edition: Die Wurzeln der Referenz Frankfurt 1989 Quine VI W.V.O. Quine Pursuit of Truth, Cambridge/MA 1992 German Edition: Unterwegs zur Wahrheit Paderborn 1995 Quine VII W.V.O. Quine From a logical point of view Cambridge, Mass. 1953 Quine VII (a) W. V. A. Quine On what there is InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (b) W. V. A. Quine Two dogmas of empiricism InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (c) W. V. A. Quine The problem of meaning in linguistics InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (d) W. V. A. Quine Identity, ostension and hypostasis InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (e) W. V. A. Quine New foundations for mathematical logic InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (f) W. V. A. Quine Logic and the reification of universals InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (g) W. V. A. Quine Notes on the theory of reference InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (h) W. V. A. Quine Reference and modality InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VII (i) W. V. A. Quine Meaning and existential inference InFrom a Logical Point of View, , Cambridge, MA 1953 Quine VIII W.V.O. Quine Designation and Existence, in: The Journal of Philosophy 36 (1939) German Edition: Bezeichnung und Referenz InZur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982 Quine IX W.V.O. Quine Set Theory and its Logic, Cambridge/MA 1963 German Edition: Mengenlehre und ihre Logik Wiesbaden 1967 Quine X W.V.O. Quine The Philosophy of Logic, Cambridge/MA 1970, 1986 German Edition: Philosophie der Logik Bamberg 2005 Quine XII W.V.O. Quine Ontological Relativity and Other Essays, New York 1969 German Edition: Ontologische Relativität Frankfurt 2003 Quine XIII Willard Van Orman Quine Quiddities Cambridge/London 1987 |

Ed. Martin Schulz, access date 2024-02-27